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Transcriptome responses to temperature, @
water availability and photoperiod are

conserved among mature trees of two

divergent Douglas-fir provenances from a

coastal and an interior habitat
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Abstract

Background: Local adaptation and phenotypic plasticity are important components of plant responses to variations in
environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of
gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we
investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25
adult trees using deep RNA sequencing (RNA-Seq).

Results: Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod
on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a
response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene
expression responses to temperature, soil water availability and photoperiod that are highly conserved among many
plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to
the expression differences observed between individual trees. Although the effect of environment on global transcript
expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low,
since only 21 of all detected transcripts showed a GxE interaction.

Conclusions: The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental
conditions. The small variation between individuals and populations suggests strong conservation of this response
within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental
conditions are only weakly affected by local adaptation in Douglas-fir.
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Background

Plants continuously experience variations in environmen-
tal conditions on short (e.g. minutes to days) and long
time scales (e.g. weeks or growing season). Short term re-
sponses to dynamic environments require strict physio-
logical regulation and are known as phenotypic plasticity.
On evolutionary timescales, responses to a specific envir-
onment may result in adaptation to local environment
through genetic differentiation of populations, which is
known as local adaptation [1]. As a consequence of local
adaptation, plant populations frequently show the best
growth performance or fitness in [2] or next to their
habitat of origin [3] and outperform populations from
distant habitats [4]. Potential genomic targets of adap-
tation to climate have been identified by linking single
nucleotide polymorphisms (SNP) to local climate (e.g.
in Arabidopsis thaliana [5], Pinus taeda [6], Picea
mariana [7]) or by identification of associations among
SNPs and traits that are known to co-vary with climatic
clines, e.g. bud set and cold resistance (Picea sitchensis
[8]), carbon isotope discrimination (Pinus taeda [9]) or
cold hardiness (Pseudotsuga menziesii [10]).

With respect to the anticipated rapidly changing
climate [11], forest trees, which have long generation
times, need to adjust their metabolism in response to
changing abiotic factors [12]. Global transcriptome ana-
lysis has been extensively used in studies with highly
controlled conditions to characterize plasticity and diver-
sity of gene expression metabolism in response to abiotic
factors among different populations (e.g. in Arabidopsis
thaliana [13-15], Populus [16], Helianthus annuus [17],
Pinus spp. [18] or Picea spp. [18, 19]. Plants do evolve in
complex natural environments, and controlled condi-
tions in a laboratory or greenhouse facility rarely repre-
sent the ever-changing complex conditions experienced
by plants in natural environments [20]. Few studies in-
vestigated genome-wide gene expression responses to
abiotic stimuli in natural environments [21, 19, 22-25]
and studies in perennial, woody plants are exceptionally
rare but see e.g. [19] on Picea sitchensis, [22] on Vitis
vinifera and [25] on Populus euphratica.

Douglas-fir is a commercially important Pinaceae tree
species originating in western North America. Two
subspecies, Pseudotsuga menziesii var. menziesii (Coastal
Douglas-fir) and Pseudotsuga menziesii var. glauca (In-
terior Douglas-fir) diverged about 1 million years ago
[26, 27] and cover a wide natural range with contrasting
environmental conditions along the pacific coast and the
Rocky Mountains, respectively. Local adaptation of
Douglas-fir populations growing in defined geographical
areas (provenances) has been shown in several studies
[10, 28]. These characteristics make Douglas-fir an ideal
model organism to study the effect of local adaptation on
transcriptome responses to environmental conditions.
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In this study we aimed to 1) identify transcriptome
dynamics in field-grown adult Douglas-fir trees in re-
sponse to temperature, water availability and photo-
period, 2) use overrepresentation analysis to reveal
common functional themes in gene sets that respond to
environmental factors, and 3) evaluate differences in
transcriptome dynamics between provenances.

For this purpose we compared 50-year-old trees of
two divergent Douglas-fir provenances originating from
contrasting environments in British Columbia, Canada
at two contrasting common garden field-sites in South-
ern Germany. To our knowledge, this is the first genome
wide assessment of the effect of abiotic environmental
factors on the transcriptome responses of heteroge-
neous, locally adapted populations of mature trees,
grown in contrasting natural environments.

Results

Sequencing, alignment, quantification and functional
annotation

We quantified transcript expression in 25 50-year-old
Douglas-fir trees, growing at two common gardens
(Wiesloch and Schluchsee) in southwestern Germany,
during the growing season of 2010. 12 of these trees
were from provenance Cameron Lake (LA), 13 were
from provenance Salmon Arm (AR). A total of 75 RNA
extracts from needle samples collected at noon in May,
June, July and September at both field sites were se-
quenced on the Illumina HiSeq2000 (Fig. 1a). Reads were
aligned to the set of 176753 non-redundant Douglas-fir
putative unique transcripts (PUT) (Fig. 1b). The alignment
yielded on average 33 million aligned reads (Mreads) per
sequencing library. After excluding low abundant PUTs
we detected 59189 PUTs (~34 %) of the 176753 PUTs
present in the non-redundant set. Around 40 k PUTs were
functionally annotated by alignment to the NCBI plant
RefSeq data base (Table 1). GO annotations were identi-
fied for 34 k PUTs using BLAST2GO. 6330 PLAZA gene
families were identified in the set of all detected PUTs.

Variance components contributing to PUT expression
variation

In a first step we used a linear variance components
model to estimate the contribution of the environment
and the genotype to the variation in PUT expression.
Expression variation driven by environment was investi-
gated between the eight sampling time points across the
two field sites (DATE) and between two field-sites
(SITE). Expression variation driven by genotype was
investigated between provenances (PROVENANCE) and
between individual trees (TREE). The log-transformed
number of reads that aligned to each PUT was used as
the dependent variable in 59189 linear random effects
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the count data (c), linear random effect models were used to (d) detect sources of variation within the data. Differential expression between
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models (Fig. 1d). For 25 % of all PUTs, at least 40 % of
the variation in PUT expression was explained by TREE
followed by DATE (30 %) and PROVENANCE (=12 %)
(Fig. 2). The least contribution to the variation in PUT
expression was attributed to the field site (SITE; >7 %).

Table 1 Annotation statistics of detected PUTs

Cluster type Number of PUTs Unique
Annotations
PUTs detected with 1 RPM in 59189
at least 4 Libraries
hit in RefSeq 38248 21218
hit in Picea glauca ORFs 45867 14544
hit in Pinus taeda ORFs 42602 13842
hit in Vitis vinifera 38841 11263
hit in Oryza sativa 37408 11220
hit in Arabidopsis thaliana 34356 10762
B2GO annotation 34375 9062
PLAZA gene family 41175 6330

RefSeq: NCBI plant RefSeq peptide data base, Picea glauca ORFs: Picea glauca
full length ESTs, Pinus taeda ORFs: de novo assembled ESTs which have been
used to annotate the Pinus taeda genome, Vitis vinifera: Vitis vinifera peptide
data base (PLAZA), Oryza sativa: Oryza sativa peptide data base (PLAZA),
Arabidopsis thaliana: TAIR10 peptide data base, B2GO: GO annotations inferred
by the BLAST2GO pipeline

Detection of differentially expressed PUTs between
provenances and in response to environmental variation
The effect of environment (E), genotype (G) represented
by PROVENANCE, or their interaction (GxE) on PUT
expression was further investigated using linear mixed
models (see Fig. 1e). This analysis identified 1764 PUTs
that were differentially expressed between the two
provenances (PROVENANCE), 39614 differentially
expressed PUTs between sampling time-points (DATE),
and 21 PUTs that were affected by the interaction of prov-
enance and environment (FDR <0.01, F-test with Kenward-
Roger approximation) (Fig. 3).

Assuming that DATE integrates the effects of
temperature, day length and water availability on PUT
expression, we further analysed the direct effects of these
environmental factors on PUT expression using a sec-
ond set of linear mixed models (Fig. 1e). These models
comprised proxies for temperature, day length and water
availability. Since absolute temperature data were corre-
lated with day length, temperature was detrended by
subtracting the four weak running average from air
temperature on the day of sampling resulting in the new
variable TEMPERATURE. Day length was represented as
deviation of photo period from the length of the day at
solstice (DAYLENGTH) and total available soil water
(TAW) was modeled using the forest water model WBS3
(Fig. 4a-c). We inspected correlation of all variables
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Fig. 2 Variance components of biological and environmental factors.
Proportion of total expression variation attributable to provenances
(PROVENANCE), field sites (SITE), individual trees (TREE) sampling time
point (DATE) for all detected 59189 PUTs. A linear random effects
model that comprises all above mentioned random effects was fit to
all PUTs using the R package Ime4. Variance components for each
random effect were extracted and divided by the sum of all variance
components and the residual variance

\

(Additional file 1: Figure S1) and observed no strong
correlation between TEMPERATURE, DAYLENGTH and
TAW. However SITE was strongly correlated with TAW
(Additional file 1: Figure S1) and since the variance
components analysis revealed that not much expression
variance can be attributed to differences between the
field sites (Fig. 2) SITE was omitted from this second set
of models.

TAW (Fig. 4a) was generally lower at the field site
Wiesloch during all sampling time-points (DATE) and
low TAW was often accompanied by higher temperature
(Fig. 4b). The highest temperatures at both sites were re-
corded in July, when temperature exceeded the four
week average by 7 °C in Wiesloch. DAYLENGTH in
September did contrast with May, June and July, with
day length in September being 3—4 h shorter than dur-
ing May, June and July (Fig. 4c).

Further analysis of the PUTs that responded to TAW,
TEMPERATURE or DAYLENGTH revealed the expres-
sion profile in response to each of the environmental
factors (Fig. 4d). The relationship of expression levels of
PUTs to any of the three environmental factors indicated
a highly coordinated response over the entire range of
TAW, TEMPERATURE or DAYLENGTH (Fig. 4d). The
expression profile of PUTs with a positive response

PROVENANCE DATE

INTERACTION

Fig. 3 Differentially expressed PUTs between provenances and
sampling time-points. Number of PUTs that are differentially
expressed (FDR <0.01, F-test with Kenward-Roger approximation) be-
tween sampling time-points (DATE) or provenances and number

of PUTs with significant interaction of provenances and

sampling time-points

clearly contrasted with the expression profile of PUTs
with a negative response to each of the environmental
factors. Increases in TAW corresponded with an in-
creased expression of 2119 PUTs (FDR <0.01, F-test
with Kenward-Roger approximation, dR* >0.2) and a de-
creased expression of 2047 PUTs. When TEMPERATURE
increased, we observed increased expression of 1466 PUTs
versus 1771 PUTs showing the opposite response. An in-
crease in DAYLENGTH corresponded with increased ex-
pression of 2234 PUTs compared to 2581 PUTs with
decreased expression.

The specific response to environmental factors
(Fig. 4d) was also reflected by only 446 PUTs out of
the more than 12 k differentially expressed PUTs that
were effected by more than one environmental factor
(Fig. 5a).

In addition to the low number of PUTs with proven-
ance by environment interaction, only 224 PUTs out of
the 1764 PUTs that were differentially expressed be-
tween provenances were also differentially expressed in
response to at least one of the three environmental
factors included in our analysis (Fig. 5a). This set of 224
PUTs included 101 PUTs differentially expressed be-
tween provenances and in response to DAYLENGTH, 67
PUTs differentially expressed between provenances
and in response to TAW, and 62 PUTs differentially
expressed between provenance and in response to
TEMPERATURE.
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The low number of PUTs that responded to climate
and were differentially expressed between provenances
coincided with reduced expression variation of these
PUTs among provenances (Fig. 5b) and trees (Fig. 5c).
This effect is particularly pronounced for PUTs that
responded to TEMPERATURE.

Gene Ontology categories overrepresented in differentially
expressed PUTs

An overrepresentation analysis was performed to identify
Gene Ontology (GO) categories in the differentially
expressed PUTs that showed a response to environmental

conditions or showed differences between the prove-
nances. Using Fisher’s exact test (P-value < 0.01, minimum
10 differentially expressed PUTs within a GO category) we
identified 63 GO categories that were overrepresented in
higher expressed PUTs when TAW was low, in contrast to
83 GO categories that were overrepresented when TAW
was high. For TEMPERATURE we identified 54 GO
categories that were overrepresented in higher expressed
PUTs when TEMPERATURE was high and 143 GO cat-
egories that were overrepresented when TEMPERATURE
was low. For DAYLENGTH we identified 101 GO categor-
ies that were overrepresented in higher expressed PUTs
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when DAYLENGTH was longer, compared to 80 GO cat-
egories that were overrepresented when DAYLENGTH
was shorter. A comparison of GO ontologies between the
two provenances revealed 117 GO categories that were over-
represented in PUTSs that were stronger expressed in proven-
ance Cameron Lake compared to one single GO category
that was overrepresented in PUTs that were stronger
expressed in provenance Salmon Arm (Additional file 2:
Table S1).

For each regressor and direction of expression we chose
the 20 most overrepresented GO categories and investi-
gated the biological functions of PUTs within each GO
category (Fig. 6). We investigated the best hit in the Arabi-
dopsis thaliana peptide data base (TAIR10) and in the
NCBI RefSeq data base of PUTs that we observed within
the overrepresented GO categories. The best hits in the
TAIR10 data base as well as in the NCBI RefSeq data base
are listed in Additional file 3: Table S2. Hits were ranked
according to their absolute logl0O transformed P-value
from the test of differential expression. All functional
descriptions in the next sections that are not followed by a
citation were retrieved from the TAIR data base.

Biological functions of differentially expressed PUTs that
respond to TAW

GO categories related to starch metabolism, e.g. “starch
biosynthetic process”, “starch metabolic process”, and
nucleic acid metabolism, e.g. “RNA metabolic process”,
“nucleic acid metabolic process”, “gene expression”,
“regulation of cellular macromolecule compound meta-
bolic process” and “nucleobase-containing compound
metabolic process” (Fig. 6; rows 44, 45, 6, 7, 8, 9, 12;
Additional file 2: Table S1 - TAW_Down) were highly
overrepresented in PUTs that were higher expressed

when TAW was low (P-value Fisher’s exact test < 1e-04).
PUTs within the GO categories related to nucleic acid
metabolism included homologs of the protein kinase
WEE1 (AT1G02970; Additional file 3: Table S2 - TAW _
Down; rank 1) which negatively regulates the entry into
mitosis [29], the CDC2 related kinase AFC1 (AT3G53570;
rank 6), the WUSCHEL-related homeobox gene family
member WOX13 (AT4G35550; rank 13), the apurinic
endonuclease-redox protein ARP (AT2G41460; rank 15)
which is involved in DNA repair, the splicing factor
RSZ22 (AT2G24590; rank 24), the NAC domain transcrip-
tion factor ANAC002 (AT1G01720; rank 28) whose
mRNA levels increase in response to abscisic acid in Ara-
bidopsis thaliana or the zinc-finger proteins CCCH20 and
CCCH49 (AT2G19810; ranks 33, 187) that are involved in
RNA binding in the response to osmotic stress [30].

Within the GO categories related to starch metabolism
we identified homologs of the phosphoglucomutase
PGMP (AT5G51820; rank 2), which controls photosyn-
thetic carbon flow, the beta amylase BAM3 (AT4G17090;
ranks 20, 34), the starch branching enzyme SBE2.2
(AT5G03650; rank 21), or the fructose 1-6 bisphosphatase
FBP (AT1G43670; rank 41).

GO categories related to intracellular transport, e.g.
“Golgi vesicle transport”, “vesicle mediated transport or
“intracellular transport” (Fig. 6; rows 73, 74, 77; Additional
file 2: Table S1 - TAW Up), were highly overrepresented
in PUTs that were higher expressed when TAW was
high (P-value Fisher’s exact test < 1e-08). Within these
categories we detected homologs of the vacuolar sort-
ing receptor VSR6 (AT1G30900; Additional file 3:
Table S2 - TAW Down; ranks 4, 8, 487), the MATE
efflux protein (AT1G51340; rank 5), the membrane
trafficking proteins SYTA and SYTB (AT2G20990 and
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Fig. 6 GO term overrepresentation analysis of PUTs that respond to environment or are differentially expressed between provenances. The top
20 GO categories that were significantly overrepresented within PUTs that respond to TEMPERATURE, TAW, DAYLENGTH or PROVENANCE are shown.
Redundant GO categories have been removed using REVIGO [103] with default parameters. Numbers in columns indicate the amount of
overrepresentation which is the number of significant PUTs within a GO category divided by the number of expected PUTs within a GO category
and are only shown for significant overrepresentation of a GO category (Fisher's Exact Test, P < 0.01). The p-value of Fisher's exact test is indicated
by color intensity. Red color indicates high overrepresentation of a GO category within PUTs that are positively correlated with TEMPERATURE and
DAYLENGTH, negatively correlated with TAW or stronger expressed in Cameron Lake (PROVENANCE). Blue color indicates high overrepresentation
of GO categories within PUTs that are negatively correlated with TEMPERATURE and DAYLENGTH, positively correlated with TAW or stronger
expressed in Salmon Arm (PROVENANCE). The dendrogram indicates the similarity of GO categories in terms of shared PUTs among GO
categories, expressed by Cohen'’s Kappa. Numbers behind GO categories indicate the hierarchy of the GO graph, while more basal terms have

AT2G20080; rank 6 and rank 14), the UDP glucose /
UDP galactose transporter UTr7 (AT4G31600; rank
11), or the sucrose transporter SUC3 (AT2G02860;
ranks 19, 181, 430, 590).

Biological functions of differentially expressed PUTs that
respond to TEMPERATURE

GO categories related to oxidative and heat stress, e.g.
“response to heat”, “response to hydrogen peroxide”
(Fig. 6; rows 54, 55; Additional file 2: Table S1 -
TEMPERATURE _Up) were highly overrepresented (P-
value Fisher’s exact test<le-16) in PUTs that were
stronger expressed when TEMPERATURE was high.
PUTs within these categories were homologs to heat
shock proteins (Additional file 3: Table S2 - Temperature
Up; e.g. ranks 13, 16, 17, 22, 27, 31). Other proteins identi-
fied are involved in the acclimation to heat, e.g FKBP62
which is engaged in thermotolerance (AT3G25230; ranks
5,6) [31] or the multiprotein bridging factor MBF1C
(AT3G24500; rank 138) which interacts as a co-factor
with bZip transcription factors [32].

GO categories related to control of gene expression, e.g.
“regulation of cellular macromolecule biosynthetic process”,
“negative regulation of gene expression” (Fig. 6; rows 9, 43)
were also overrepresented. These categories comprised ho-
mologs of ethylene responsive transcription factors with
ERF/AP2 domain (AT1G19210; ranks 116, 204, 281 -
AT5G21960; ranks 119, 161, 178, 181 - AT1G74930; rank
271 - AT5G11590; rank 258) which are involved in various
stress responses in plants [33]. We also identified homologs
of HSF2A (AT2G26150; rank 24) which is an important
heat shock transcription factor [34]. In addition to genes
directly involved in control of gene expression, we
also observed homologs of genes which are involved
in chromatin modification [35], such as the histone
methyltransferase SUVH4 (AT5G13960; rank 14) and
OTLD1 (AT2G27350; rank 155) [36].

GO categories “photosynthesis, light reaction”, “photo-
synthesis” and “generation of precursor metabolites and
energy” (Fig. 6; rows 17, 18, 19) were highly overrepre-
sented (P-value Fisher’s exact test < 1e-06) in PUTs show-
ing a negative response to high TEMPERATURE. Within

these categories, we observed homologs of the triose phos-
phate/3-phosphoglycerate translocator APE2 (AT5G46110;
Additional file 3: Table S2 - “TEMPERATURE_ Down’;
rank 2), the large subunit of ADP-glucose pyrophos-
phorylase ADG2 (AT5G19220; rank 28) which catalyzes
the first rate limiting step in starch biosynthesis, the cyto-
solic malate dehydrogenase c-NAD-MDH1 (AT1G04410;
ranks 22,100) or the chloroplast protein phosphatase
TAP38/PPH1 (AT4G27800; ranks 62, 241) which de-
phosphorylates the light harvesting complex of photo-
system II [37].

Biological functions of differentially expressed PUTs in
response to DAYLENGTH

GO categories related to signalling and regulation, e.g.
“regulation of cellular process”, “response to blue light”,
“regulation of response to stimulus”, “signal transduc-
tion”, “response to hormone” (Fig. 6; rows 2, 51, 66, 69,
70) were highly overrepresented (P-value Fisher’s exact
test < 1e-05) in PUTs that were higher expressed under
long day conditions. PUTs within these categories were
homologous to the floral homeotic protein APETALA2
(AT4G36920; Additional file 3: Table S2 - “DAYLENGTH
Up”; ranks 3,4), the homeobox leucine zipper proteins
HB1 (AT3G01470; rank 9), HB5 (AT5G65310; rank 1)
and HB6 (AT2G22430; rank 2), the flavonoid 3 hydroxy-
lase 2 CYP75B1 (AT5G07990; ranks 11,177, 247), the
lipoxygenase LOX5 (AT3G22400; ranks 14, 116), the
myb family transcription factor MYB33 (AT5G06100;
rank 26, 43) or the inositol triphosphate 5 phosphatase 2
5PTASE2 (AT4G18010; ranks 12, 29, 33) which regulates
growth in seedlings [38].

Within the above mentioned GO categories we also ob-
served homologs of members of the flowering control net-
work which is tightly coupled to sensing changes in the
duration of photoperiod [39]. Examples are GIGANTEA
(GL AT1G22770; ranks 311, 317, 417), flowering locus t (FT;
AT1G65480; ranks 185, 309), phytochrome B (AT2G18790;
rank 327) or leafy (LFY; AT5G61850; rank 103).

GO categories “ribosome biogenesis” and “translation”
(Fig. 6; rows 14, 41) were highly overrepresented (P-value
Fisher’s exact test<1e-09) in PUTs that were higher
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expressed when daylength decreased. However the PUTs
that were most strongly differentially expressed in these
conditions were found within the weakly overrepresented
GO categories related to gene expression, e.g. “nucleic
acid metabolic process” or “gene expression”, and pyru-
vate metabolism, e.g. “pyruvate metabolic process” (Fig. 6;
rows 7, 8, 25). PUTs within these GO categories were
homologous to the small hydrophobic protein RCI2A
(AT3G05880; Additional file 3: Table S2 “DAY-
LENGTH_Down”; rank 2), the histidine kinase phyto-
chrome PHYE (AT4G18130; rank 4), the GATA
transcription factor GATA12 (AT5G25830; rank 5), a
member of the DREB subfamily A2 (AT5G05410; rank 9),
the enolase ENO1 (AT1G74030; ranks 13, 14), the thyla-
koid protein PSB29 (PSB29, AT2G20890; rank 24) [40] or
the phosphatidylglycerol phosphate synthase PGP1
(AT2G39290; rank 42) which is involved in cold acclima-
tion [41]. In addition we observed many NAC domain
containing transcription factors (e.g. AT4G29230; rank 27
— AT1G01720; rank 34 — AT4G29230; rank 51).

PUTs with homology to RCI2A were also found in GO
category “osmotic stress” which was overrepresented as
well (Additional file 2: Table S1 - DAYLENGTH Down).
Within this category we identified homologs of the cold
regulated proteins COR314 and COR413 (AT1G29390;
rank 6 — AT1G29395; rank 10), the alcohol dehydroge-
nases ADH and ADH2 (AT1G77120; ranks 11, 15 —
AT5G43940; rank 16), RCI2B (AT3G05890; rank 37) or
the NADPH dependent aldo-keto reductase AKR4C9
(AT2G37770; rank 40).

Biological functions of PUTs differentially expressed
between provenances
GO categories related to pigment biosynthesis or photosyn-
thesis, e.g. “cofactor metabolic process”, “isoprenoid meta-
bolic process”, “photosynthesis” or “plastid organization”
(Fig. 6; rows 28, 21,18, 16) were highly overrepresented (P-
value Fisher’s exact test < 1e-06) in PUTs that were higher
expressed in Cameron Lake than in Salmon Arms.
Upregulated PUTs observed within the GO categories
related to photosynthesis included homologs of the blue
light receptor NPL1 (AT5G58140; Additional file 3: Table
S2 - “PROVENANCE_Up”; rank 8) which mediates stoma-
tal opening and chloroplast movement [42], the protease
DEG1 (AT3G27925; rank 9) which is targeted to the
chloroplast to repair damages of the photo system [43],
the chlorophyll A oxigenase CAO (AT1G44446; rank 40)
which enhances photosystem efficiency by increasing the
antenna size of photosystems [44], or the small subunit of
RUBISCO (AT1G67090; rank 223). PUTs within GO
categories related to pigment biosynthesis were hom-
ologous to the phytoene synthase PSY (AT5G17230;
rank 12), the NADPH thioredoxin reductase NTRC
(AT2G41680; rank 16), the ferrochelatase 2 FC-II
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(AT2G30390; ranks 35,155), or the zeaxanthin epoxi-
dase ABA1 (AT5G67030; rank 79) which converts the
photoprotective xanthophyll zeaxanthin into antherax-
anthin and violaxanthin [45].

Only the GO category “phenylpropanoid metabol-
ism” was overrepresented in PUTs that were higher
expressed in Salmon Arm (Fig. 6; row 48). Within this
GO category we identified PUTs that were homolo-
gous to the most basal enzymes of the phenylpropa-
noid pathway, e.g. the 4-coumarate ligase 4CL
(AT1G20510; Additional file 3: Table S2 - “PROVENAN-
CE_Down”; ranks 1-5), the cinnamate-4 hydroxylase C4H
(AT2G30490; rank 17), the O-methyltransferase OMT1
(AT5G05170; rank 12) or the chalcone synthase TT4
(AT5G13930; rank 7).

Discussion

A large part of the Douglas-fir transcriptome responds to
variations in environmental conditions in the field

We have investigated transcript expression in needles of
adult Douglas-fir trees growing under natural field
conditions. We assessed differences in transcriptome
dynamics in response to variations in environmental
conditions but also variations in transcript abundance
among individual trees and among two differentially
adapted provenances. The alignment of our RNA-Seq
data to our non-redundant Douglas-fir PUT set using
the unigene catalogues of [46, 47] allowed identification
of 59189 expressed PUTs. These 60 k PUTs correspond
to 14539 unique hits in the Picea glauca gene catalogue
[48]. We assume that these unique hits correspond to an
equivalent number of unique gene loci which is in con-
cordance with the number of expressed genes in Pina-
ceae needle tissue [49]. Despite stringent cut-off values
(FDR <0.01, dR* >0.2), many Picea homologs were
differentially expressed in response to variations in en-
vironmental conditions: 15 % for TAW, 10 % for
TEMPERATURE, 16 % for DAYLENGTH and 82 % for
DATE. A recent gene expression study conducted in
Pinaceae detected 5794 of 14691 (FDR <0.01) ortholog
sequences among Picea and Pinus to be differentially
expressed in response to environmental conditions in a
growth chamber [18], this being in the range of our esti-
mates. The most comprehensive transcriptome analysis
performed in Oryza sativa under field conditions esti-
mated that 43 % of all expressed genes respond to
temperature, radiation and other macroenvironmental
factors [50]. Richards et al. [23] detected variation in
expression over time in almost all genes in two Ara-
bidopsis accessions that were grown in a natural en-
vironment. This indicates that a large part of
expressed genes in leaf tissue responds to variations
in natural environmental conditions.
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PUTs that are differentially expressed in response to
TEMPERATURE and DAYLENGTH reveal homology to
genes controlled by heat stress and photoperiod

High temperature at the field sites clearly shaped gene ex-
pression in Douglas-fir needles. We observed stronger ex-
pression of PUTs that are related to heat shock proteins
and other heat stress related proteins like MBF1 when
TEMPERATURE was high, e.g. the ascorbate peroxidase
APX2 or HSFA2 [34]. In addition we observed stronger
expression of PUTs related to ERF/AP2 family transcrip-
tion factors that are also well known to be stronger
expressed in response to stress [51]. In contrast, PUTs re-
lated to photosynthetic activity, sugar and energy metabol-
ism were weaker expressed when TEMPERATURE was
high. Notable examples are PUTs related to the triosepho-
sphate/3-phosphoglycerate translocator APE2 which is a
key component in transporting assimilated carbon from
the chloroplast into the cytosol, or the ADP-glucose
pyrophosphorylase ADG2 which is important in starch
biosynthesis. Reduced expression of genes involved in
photosynthesis in response to temperature stress has
already been described by [52] in Arabidopsis and by [53]
in Arabidopsis, Populus and Glycine. Taken together, the
observed gene expression pattern suggests a highly con-
served response to temperature in several herbaceous
plants and trees such as poplar, and based on our data also
in Douglas-fir.

Day length controlled more than 16 % of the transcrip-
tome. Major GO categories that were overrepresented in
PUTs that were more abundant when day length was
long were “meristeme development” or “response to
hormone stimulus” (Fig. 6; rows 8-11). Upon deeper
analysis, we observed many members of the gene net-
work that controls flowering in angiosperms [39].

Exposure to short day length resulted in a complex re-
sponse of the transcriptome. PUTs that were higher
expressed when DAYLENGTH was low displayed hom-
ology to proteins involved in cold acclimation like RCI2
-A and -B [54], ADH [55] or the NADPH dependent
aldo-keto reductase AKR4C9 [56]. Preparation for cold
acclimation is associated with osmotic stress [57]. Thus,
it is not unexpected that we observed PUTs with
homology to DREB2 [58] or NAC domain containing
transcription factors that are known to be induced by
dehydration stress [51].

The most comprehensive study of cold acclimation
in a natural environment has been conducted in Picea
sitchensis seedlings where the authors contrasted gene
expression during October, November and December
with late summer gene expression during August
[19]. Several transcripts with homology to proteins
that are known to be involved in the adaptation to
cold were identified in this study. Although their
sampling time-points did only partially overlap with
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ours, over 40 % of the best hits in the Arabidopsis
thaliana peptide data base observed in [19] were also
observed in the differentially expressed PUTs in re-
sponse to DAYLENGTH. This consistent pattern is re-
markable as we used a different measurement
method, used strict filter criteria to classify PUTs as
significant, and used adult individuals of a different
conifer species. Examples for overlapping annotations
are GI or RCI2-A. Interestingly, neither [19] nor our
study detected stronger expression of CBF/DREB
transcription factors which are known to be essential
for acclimation to low temperatures in Arabidopsis
thaliana [59, 60] when day length decreases.

Reduced TAW induced expression of transcripts related to
starch metabolism, a conserved response to reduced
water availability in plants
In response to low TAW, GO categories related to nu-
cleic acid and starch metabolism were overrepresented,
while GO categories related to intracellular transport
were overrepresented when TAW was high (Fig. 6; Rows
6-12, 44, 45 and 73-81 respectively). Although no GO
categories related to osmotic stress were significantly
overrepresented we observed upregulation of individual
PUTs that are involved in osmoregulation. We observed
homologs of the osmosensor HK1 (AT2G17820; rank
179) which is higher abundant in Arabidopsis when
osmolarity is especially high or low [61], or to aquapo-
rins which are involved in handling osmotic stress [62].
In particular the aquaporins TIP1 (AT2G36830; rank 140),
PIP2.8 (AT2G16850; rank 234), and PIP2.2 (AT2G37170;
rank 279) were identified. Compared to the response to re-
duced day length, fewer specific indicators for osmotic
stress were identified. However, we identified several
homologs representing general stress responses when
TAW was low. We observed PUTs with homology to the
AP2/ERF domain containing transcription factors ERF-1
(AT4G17500; Additional file 3: Table S2 - TAW Down;
rank 70), DEAR2 (AT5G67190; rank 146) and EBP
(AT3G16770; rank 224). AP2/ERF domain containing tran-
scription factors are involved in general stress responses
but are also involved in osmotic stress [51]. In addition we
observed homologs of the copper/zinc superoxide dismut-
ase CSD1 (AT1G08830; rank 40) which is known to be
expressed in drought stressed plants [63], the NADPH
dependent thioredoxin reductase NTRC (AT2G41680; rank
46) and the protochlorophyllide oxidoreductase PORA
(T5G54190; rank 81) which protect the chloroplast against
oxidative damage [64, 65]. These annotations are indicators
for a certain amount of stress that the trees were con-
fronted with during June and July at the site Wiesloch when
TAW was low.

Transcription factors that are typically not known to
be involved in the response to reduced water availability
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were also identified in the PUTs that were stronger
abundant when water availability was low. Examples are
the helix-loop-helix protein CIB (AT1G26260; rank 77),
the transcriptional repressor MYB4 (AT4G38620; ranks
124, 132, 329, 334) which is involved in the response to
UV-B [66] or SIG5 (AT5G24120; rank 171) which is
expressed in response to high light [67].

In contrast to the responses to heat and changes in
photoperiod, gene expression responses to decreases in
water availability are less uniform among different exper-
iments conducted in the same species and organ [68].
This is because the experimental manipulation of water
stress is far more difficult to control than the manipula-
tion of photoperiod and temperature. Nevertheless, an
increase in starch metabolism under conditions of water
shortage was also observed under conditions of mild
drought stress in Arabidopsis thaliana [14]. A recent
meta-analysis also revealed that enhanced expression in
response to drought is conserved among species includ-
ing Oryza sativa, Arabidopsis thaliana, Triticum aesti-
vum or Glycine max [69]. Pinheiro and Chaves [68] and
Prasch and Sonnewald [52] did also report downregula-
tion of genes related to intracellular transport in Arabi-
dopsis thaliana which is consistent with our data. We
also observed overrepresentation of the GO category
“cell growth” in PUTs that were higher expressed when
TAW was high (Additional file 2: Table S1 - TAW_Up).
Thus, our results indicate reduced cell growth and pro-
liferation when water availability is low. This has also
been reported for Arabidopsis thaliana by [70] and [14].
Indicators for the reduced growth are homologs of
WEE1 which negatively regulates the entry into mitosis
[29] that were higher expressed when TAW was low.

In contrast to the response to high TEMPERATURE,
no GO categories related to photosynthesis were over-
represented in PUTs that were weaker expressed when
TAW was low. This indicates no effect of low water
availability on photosynthetic related gene expression.
This phenomenon has also been reported by [14] in
Arabidopsis thaliana.

The two provenances Cameron Lake and Salmon Arm
differ in constitutive expression of transcripts related to
photosynthesis

The effect of environment on the global transcript expres-
sion was high, nonetheless expression differences between
the provenances were rather small, since only 1764 PUTs
were differentially expressed between the provenances. The
weak expression differences between the provenances were
not only indicated by the low number of differentially
expressed PUTs, but also by the generally small variation in
PUT expression levels among provenances (Fig. 5b) and a
high variation in expression among trees (Fig. 5c). These
findings are consistent with reports by [19] who detected
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only about 900 differentially expressed transcripts between
provenances from contrasting habitats in Picea sitchensis,
or by [71] who reported weak genetic variation in the me-
tabolite abundance among multiple Douglas-fir families.

Despite their small number, the transcripts that are
differentially expressed between the two provenances are
likely responsible for differences in adaptive traits. For
example, PUTs that were observed in higher abundance in
Cameron Lake were related to photosynthesis. Examples
are homologs of the serine/threonine kinase NPL1 (also
known as PHOT2), which can act as a blue light photo-
receptor and is involved in controlling of stomatal opening
[72]. Overexpression of NPL1 resulted in enhanced photo-
synthetic activity and growth in Arabidopsis thaliana [42].
Other examples are the protease DEG1, which is targeted
to the chloroplast to repair damages of the photosystems
[43] or the chlorophyll A oxygenase CAO which enhances
the efficiency of the photosystems by increasing the an-
tenna size of photosystems [44]. The higher expression of
these genes might translate into a generally higher photo-
synthetic activity in Cameron Lake.

Moreover, it has been frequently reported from com-
mon garden experiments that water use efficiency
(WUE) is higher in coastal than in interior Dougals fir
[73, 74] and [75]. This is a counterintuitive observation,
since one would expect that interior Douglas fir prove-
nances from higher altitudes would generally be better
adapted to episodic water limitations, which is often as-
sociated with increased WUE. Aitken et al. [74] and
Zhang et al. [75] suggested that the location of the ex-
perimental sites must have an influence on WUE. How-
ever, the observation that NPL1/PHOT2, which controls
stomatal opening and hence WUE, is higher expressed
in the coastal provenance Cameron Lake indicates that
higher WUE in a coastal Douglas fir provenance might
result from an increased ability for regulating stomatal
behavior and mediating higher WUE.

Interactions of provenance and environment

The effect of the interaction among provenance and
DATE which represents the genotype by environment
interaction (GxE), was surprisingly low with only 21
PUTs showing a response (Fig. 3, Additional file 4:
Figure S2). Only three of these PUTs were homologous
to Arabidopsis thaliana genes: a calmodulin binding
protein (AT2G26190), an Armadillo repeat protein
(AT4G34940) and a subunit of the cytochrome oxidase
COX1 (ATMGO01360). Due to the small extent of the
GxE effect we did not further investigate interactions
among provenances and the individual environmental
regressors (TAW, TEMPERATURE and DAYLENGTH)
because we expected those interactions to be even
weaker. Weak GXE effects on the transcriptome dynam-
ics were also observed in field-grown seedlings of
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Arabidopsis thaliana from contrasting habitats [23]. In
addition, there is also evidence that transcript levels of
only a small number of genes are influenced by eQTL x
environment interactions in Arabidopsis thaliana [76].

PUTs that responded to environment (TAW, DAY-
LENGHT, TEMPERATURE) showed a lower variation
of PUT abundance among provenances (Fig. 5b) and
trees (Fig. 5c) compared to all detected PUTs. Thus,
the small GxE effect in our data from field-grown
adult Douglas-fir trees suggests that plastic transcrip-
tome responses to variations in environmental condi-
tions are strongly conserved both at the tree and
provenance level. These findings are supported by
results from [18] who observed that 74 % of the
genes that respond to variations in environmental
conditions in a growth chamber experiment also dis-
played conserved expression patterns in Picea and
Pinus despite the large divergence time of both
species (> 140 million years). Most notably, in our ex-
periments the expression of PUTs that responded to
TEMPERATURE varied less among provenances and trees
compared to all other environmental factors (Fig. 5b, c).
Previous experiments performed in growth chambers
comparing Glycine max, Arabidopsis thaliana and seed-
lings of Populus trichocarpa revealed that transcriptome
dynamics in response to high temperature are conserved
across these angiosperm species [53]. Nevertheless, the
observation that there is such a small variation in the re-
sponse to high temperature among mature field grown
trees and provenances of a conifer species is striking
and highly relevant for foresters for adapting forests
to climate change. Overall, the small GxE effects indicate
that local adaptation has a rather small effect on the ability
of Douglas-fir trees to modulate gene expression and their
ability to deal with novel climates. It seems that differences
in gene expression between the provenances (factor
PROVENANCE), indicated by 1764 differentially expressed
PUTs and overrepresentation of GO categories including
photosynthesis and secondary metabolism, by far outweigh
the importance of GxE effects in the two provenances
included in our study. Nevertheless we only investigated a
rather small number of genotypes, and only over one grow-
ing season. Thus, it would be important to assess if the
genes that contributed here to the plastic response to envir-
onment between the two provenances will be also involved
among larger groups of populations and larger temporal
scales.

Conclusions

Whole transcriptome responses to natural and highly
variable environmental conditions were studied in adult
Douglas-fir trees representing two populations from
contrasting habitats. We investigated the correlation of
transcript abundance with regressors that represented
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high temperature, photoperiod and water availability.
Functional annotation and overrepresentation analysis
revealed that Douglas-fir transcript regulation was simi-
lar to other species, indicating the high conservation of
transcript expression in response to environmental cues.
Thus our data set represents a rich repository of vali-
dated transcriptional responses to the main abiotic
parameters of a natural and highly variable environment.

Almost no transcripts with divergent plastic expres-
sion responses between the provenances were observed.
In addition, the transcripts that responded to environ-
mental cues varied less among trees and among prove-
nances compared with expression variations in the
transcriptome. In contrast, we observed a substantial
constitutive differentiation in gene expression activity re-
lated to photosynthesis and secondary metabolism
between both provenances. Therefore we assume that
local adaptation in Pseudotsuga menziesii is unlikely to
be driven by divergent transcriptional short-term re-
sponses to environment among populations, suggesting
that local adaptation is not reflected in short-term re-
sponses and instead determines long term physiological
and metabolic processes.

Methods

Experimental design and plant material

Two Douglas-fir provenances originating from the west-
ern pacific coast of North America, Cameron Lake (LA)
and westwards from the Rocky Mountains, Salmon Arm
(AR) were investigated. While Cameron Lake represents
a coastal Douglas-fir originating from Vancouver Island,
Salmon Arm originates from an inland hybridization zone
of coastal and interior Douglas-fir. The origins are in rela-
tive proximity (~ 1000 km) and vary by one degree in lati-
tude. The origins differ in elevation (AR: 650 m, LA:
210 m), mean annual temperature (AR: 7.8 °C, LA: 10 °C)
and most importantly in mean annual precipitation (AR:
500 mm, LA: 1475 mm). Recent studies using SNP [77]
and microsatellite markers [78] revealed a clear genetic
differentiation of these two provenances. For this study we
used 50-year-old Dougls-fir trees from two common gar-
den experiments near Schluchsee (S; 47°84" N, 8°11" E)
and Wiesloch (W; 49°30° N, 5°53" E) in south-western
Germany. The trees were planted during the International
Douglas-fir provenance trial of 1958 [79]. The two sites
differ in annual precipitation (S: 1345 mm, W: 660 mm)
as well as in elevation (S: 1050 m, W: 105 m above sea
level) and annual mean temperature (S: 6.1 °C, W: 9.9 °C).
A detailed description of the provenances and the two
field sites can be found in [78, 80]. At each field site needle
samples were taken repeatedly from 8 trees per proven-
ance and on four different dates during the 2010 growing
season (in Schluchsee on May 27, June 30, July 28,
September 15; in Wiesloch on May 12, June 16, July 14,
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September 8; these eight sampling dates reflect the levels
of the factor DATE that was used for modeling of gene
expression, see below). This resulted initially in a total of
128 samples. Subsequent quality testing in the lab revealed
variation in RNA quality. Excluding samples with RNA that
was not suitable for RNA sequencing resulted in a final
number of 75 needle samples that were used to generate
libraries for RNA sequencing. A detailed overview listing all
trees and samples included in this study is provided in
Additional file 5: Table S3. Needle samples were collected
from the upper sun exposed southern canopy (~ 3 m below
the top, at a height of about 25-30 m). Previous year’s
needles (2009) were collected around noon (12:30—15:00)
and immediately frozen in liquid nitrogen upon collection.

Library preparation and lllumina mRNA sequencing

After homogenization in liquid nitrogen using mortar
and pestle, total RNA was extracted using a CTAB based
extraction method, modified after [81]. After precipita-
tion and resuspending the RNA, a DNase I digestion
was performed, using Qiagens RNase-Free DNase Set
(Cat. no. 79254). Afterwards, the DNase was removed
using silica columns (Qiagen RNEasy MinElute, Cat. no.
74204). The integrity of the total RNA was checked on a
2100 Bio-analyzer (Agilent, CA, USA) using the RNA
6000 nano assay and the Plant total RNA protocol. The
purity of total RNA was checked on a Nanodrop ND-
1000 (Thermo Scientific, Bremen, Germany). From each
sample, one deep mRNA sequencing library was pre-
pared, using the TruSeq RNA Sample Preparation Kit v2
starting from 4 pg total RNA (Illumina, CA, USA). The
libraries were prepared and sequenced on two Illumina
100 bp paired end (PE) flow cells on the Illumina HISEQ
2000 at the Genome Quebec Innovation Centre in
Montreal, Canada. Based on earlier investigations [82],
we aimed at an effective sequencing depth of 20 million
aligned reads per sample.

Alignment to joint Douglas-fir PUT set

We merged the recently published putatively unique
transcript (PUT) sets for Douglas-fir [46, 47] to create a
non-redundant set of PUTs using CD-HIT-EST (Version
4.6) [83], a tool for fast clustering of nucleotide and
protein sequences. PUTs that were entirely covered by
longer PUTs and have 99 % sequence identity with the
longer PUT were removed. Finally all PUTs smaller than
200 bp were discarded. The 100 bp paired-end (PE)
reads from the Illumina sequencing were aligned to the
joint Douglas-fir PUT-set with Bowtie2 (Version 2.1.0)
[84] using the global alignment mode and otherwise de-
fault settings. The alignment was parsed and analyzed
with a custom Python script which builds on the HTSeq
python library [85]. All hits below a threshold sequence
identity of 95 % and alignment length of 80 were
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discarded. When multiple best hits existed, i.e. hits with
the same sequence identity and the same alignment
length, one of these hits was randomly selected by Bow-
tie2. The PUT set contains potential splice variants.
Splice variants that are anticipated to emerge from a
common genomic locus are grouped in one isogroup
and sequence stretches may appear multiple times in the
PUT set. Thus, uniqueness of a hit was not considered.
Subsequently, reads that aligned to a PUT were counted
and converted to counts per PUT using a custom
Python script. Only PUTs with more than 1 read per
million aligned reads (RPM) in at least four libraries
were retained.

Functional annotation of PUTs

To functionally annotate the detected PUTs, we did a
BLASTX search in the Arabidopsis thaliana peptide data
base (TAIR 10) and the NCBI Plant RefSeq peptide data
base (date of download: May-8-2013) (BLASTX, NCBI
BLAST+ suite, Version 2.2.24+, E < 1le-3, sequence iden-
tity >40 % ). For Gene Ontology (GO) [86] annotation,
the results of the BLASTX search against the NCBI
plant RefSeq proteins (RefSeq) were fed into the Blas-
t2GO pipeline [87]. Functional annotation is also de-
scribed in [82]. The detected PUTs were also aligned to
a high quality mostly full length Picea glauca EST set
[48], to a set of transcripts of Pinus taeda which has
been used to annotate the Pinus taeda genome [88] and
to Vitis vinifera and Oryza sativa peptides stored in the
PLAZA data base (Version 2.5) [89] using RAPSEARCH
[90]. RAPSEARCH is similar to BLAST but uses a re-
duced amino acid alphabet to increase processing speed
and the identification of seeds in the query sequences. It
is thus 20 to 90 times faster than BLAST at the draw-
back of a slightly reduced sensitivity [90]. The reduced
sensitivity results in missing alignments with high E-
values. We retained alignments identified by RAP-
SEARCH with E-value < 1le-5. The expressed PUTs were
assigned to gene families stored in the PLAZA data base
using the TRAPID functional annotation pipeline [91].

Data transformation and exploratory analysis
Normalization for sequencing library size and variance
stabilizing transformation

Differences in library size between the deep sequencing
libraries were corrected using the method implemented
in the Bioconductor [92] package DESeq [93] which is
one of the most robust methods to correct for library
size [94]. Log transformation of the number of aligned
reads per PUT (Fig. 1c) resulted in normally distributed
data for more than 95 % of PUTs (Kolmogorov-Smirnov
test, P> 0.05).
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Estimation of variance components attributed to individual
tree, provenance and environment

To estimate the amount of variance in PUT abundance
that is attributed to each individual tree, provenance or
environment, we estimated the respective variance com-
ponents using a linear random effects model. We fit a
model that included the individual tree (TREE), the
common garden (SITE), the provenance (PROVEN-
ANCE) and the sampling time-point (DATE) to the
transformed count data of each detected PUT using the
R [95] package Ime4 [96] and restricted maximum likeli-
hood (REML). Variance components for each random
effect were extracted and divided against the sum of all
variance components and the residual variance.

Linear modelling of PUT abundance

Description of environmental parameters and genetic
factors as regressors for the linear regression models

Total available soil water (TAW), air temperature
(TEMPERATURE) and day length (DAYLENGTH) were
used as environmental parameters in our analysis. TAW
was obtained from the forest water model WBS3 [97]
which uses mean daily temperature and daily precipita-
tion as the meteorological input parameters, combined
with latitude, soil type, plant cover, slope and slope as-
pect. Mean daily temperature and mean daily precipita-
tion were measured at two weather stations, one
operated by “Deutscher Wetterdienst” (DWD) close to
the field site Wiesloch and one privately operated close
to the field site Schluchsee. TEMPERATURE in our
analysis represents the average air temperature of the
sampling day recorded between 10:00 am and 2:00 pm
centered to the four week running average of air
temperature. Centering was performed to detrend the
temperature which is correlated with day length and to
identify time-points of above-average temperature. Day
length (DAYLENGTH) on the day of sampling was cen-
tered to the length of the longest day of the year (solstice
on June 21). To account for the season and the direction
of an increasing versus a decreasing day length before
and after solstice, day length before June 21 was assigned
a positive value and after June 21 a negative value. The
field site and the provenance were encoded as dummy
variables (SITE and PROVENANCE, respectively).

Detection of differential expression

Differential PUT expression was investigated using linear
mixed models. Models were fit to the log-transformed
count data using the function lmer in lme4 [96]. We
compared nested models using an F-test with Kenward-
Roger approximation implemented in the R-package
pbkrtest. P-values from the F-test were adjusted for mul-
tiple testing using the Benjamini-Hochberg procedure.
In addition to the F-test the dAIC and dR® were
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calculated as the difference in Akaike information criter-
ion (AIC) and coefficient of determination (R*) of the
model containing the regressor compared to the model
without it (Fig. 1e). The R? for the fixed effects part of
the model was calculated according to [98].

2 _ L2
Rmarg = Ofix
.2 2 2
Gflx + Urand + Oerr

(0%, = variance attributed to fixed effects, 02,4 = vari-
ance attributed to random effects, 0%, = residual
variance).

To test for differential expression between prove-
nances and sampling time-points (DATE) including
interaction of both we set up and compared four
models (Fig. 1e). Each of the models contained TREE as
random intercept. After testing for the interaction ef-
fect it was removed from the model and the effects of
DATE and PROVENANCE were tested. Differential ex-
pression in response to the environmental parameters
represented by TEMPERATURE, DAYLENGTH and
TAW was investigated by removing a single environmen-
tal parameter from the model TAW + TEMPERATURE +
DAYLENGTH + PROVENANCE and comparing both
models. PUTs are only considered to respond to an en-
vironmental parameter if the corresponding regressor
increases the R* by more than 0.2, in addition to an
FDR smaller than 0.01. Multicollinearity (variance infla-
tion factor >10) did not allow for introducing water
availability (TAW) and common garden (SITE) simul-
taneously into the model (Additional file 1: Figure S1),
thus we did not include SITE. We did not consider in-
teractions among the environmental parameters to
avoid over fitting due to the limited number of sam-
pling points (n = 8).

Identification of Gene Ontology (GO) category
overrepresentation

GO categories were defined as significant, if they are
overrepresented in PUTs that respond to a regressor
(p <0.01, Fisher exact test). Furthermore, we required
significant GO categories to contain more than ten
PUTs that responded to a regressor. Overrepresenta-
tion analyses were conducted using the Bioconductor
package topGO [99].

The PUTs investigated in our analysis are assembled
EST sequences and therefore contain various isoforms of
a gene product as well as incompletely assembled se-
quences, although overrepresentation analyses by GO
categories assume a single gene locus. Therefore, we re-
duced the risk of artificially inflated abundance of anno-
tations by randomly selecting one PUT from all PUTs
that shared a best hit in the NCBI plant RefSeq data
base. We repeated the overrepresentation analysis 100
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times and averaged the results because different PUTs
with the same best BLAST hit might not equally re-
spond to a regressor.

For visualization of the results of the GO analysis, GO
categories were grouped according to the amount of
overlapping PUTs among two GO categories. This over-
lap was identified based on the Kappa statistic (Cohen’s
Kappa).

Omn _Amn
K=—/T—7""—F7—
l_Amn

Clustering of genes based on the Kappa statistic has
been described by [100]. In brief the number of shared
PUTs among two GO categories is expressed by the
Kappa statistic calculated from presence absence matri-
ces (0 / 1) where rows correspond to GO categories and
columns correspond to PUTs. Omn corresponds to the
co-occurrence of PUTs in GO categories m and n while
Amn represents the co-occurrence of PUTs in GO cat-
egories m and n expected by chance. In contrast to
[100] who employed a heuristic fuzzy partition algo-
rithm, we identified clusters of GO categories which
shared PUTs by hierarchical clustering on distance
matrices created from the Kappa scores (method “eu-
clidean”). As basal GO terms do generally carry a low in-
formation content [101], we selected only GO categories
with at least five parental terms.

Additional files

Additional file 1: Figure S1. Relationship among environmental
regressors. Color indicates the absolute value of Pearson’s correlation
coefficient calculated for each regressor pair. TAW = Total available soil
water, SITE = common garden, TEMPERATURE. DAYLENGTH = interaction of
TEMPERATURE and DAYLENGTH, TAW. DAYLENGTH = interaction of TAW
and DAYLENGTH, TAW. TEMPERATURE = interaction among TAW and
TEMPERATURE. (PDF 333 kb)

Additional file 2: Table S1. Results of the overrepresentation analysis
(P-value Fisher's exact test <0.01). P-value Fisher's exact test = P-value
from the overrepresentation analysis, Expected = expected frequency of
the GO category, given the abundance of the GO category in the set of
all detected PUTs, Significant = observed frequency of GO category.
Results are ranked based on the P-value of the overrepresentation test
(Fisher's exact test). (XLS 105 kb)

Additional file 3: Table S2. Functional annotation of differentially
expressed PUTs within overrepresented GO categories. P-values from the
test of differential expression were averaged over all PUTs (PUTs) with the
same best hit in the RefSeq data base. Annotations are ranked (Rank)
according to the absolute log10 transformed P-value (p_Value_log) from
the test of differential expression. Accession = RefSeq ID of the best hit in
the RefSeq data base, Gl = NCBI Entrez ID of the best hit in the RefSeq
data base, Ara = best hit in the Arabidopsis thaliana peptide data base
(TAIR10), Annot = annotation inferred by the Blast2GO pipeline, Ara

ID = Arabidopsis thaliana gene id, GO Reference = GO annotation shown
in Fig. 6, PUTs = significant PUTs, separated by "-", BLAST TAIR10 = e-value of
the best hit in the TAIR10 peptide database inferred by a BLASTX search for
the corresponding PUT, separated by “-", BLAST RefSeq = e-value of
the best hit in the RefSeq database inferred by a BLASTX search for
the corresponding PUT, separated by “-". (XLSX 738 kb)
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Additional file 4: Figure S2. Expression of the 21 PUTs with
significant GxE interaction effect (FDR <0.01). Expression is shown for
each time-point on each common garden. Number of aligned reads
were normalized for sequencing depth and log10 transformed.
Whiskers of boxplots extend to 1.5 times the interquartile range, dots
represent outliers. Cameron Lake =cyan color, Salmon Arm = magenta.
(PDF 50 kb)

Additional file 5: Table S3. Detailed information about the sample
characteristics. (XLS 36 kb)
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